Analysing ecological carrying capacity of bivalve aquaculture within the Yellow River Estuary ecoregion through mass-balance modelling

Author:

Zhao Q1,Huang H1,Zhu Y23,Cao M1,Zhao L4,Hong X4,Chu J13

Affiliation:

1. College of Marine Life Science, Ocean University of China, Shandong Qingdao 266003, PR China

2. Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Shandong Qingdao 266003, PR China

3. Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, PR China

4. The First Institute of Oceanography Ministry of Natural Resources, Qingdao 266061, PR China

Abstract

As the largest aquaculture producer in the world, China is facing the challenge of maintaining sustainability while continuing to develop the aquaculture industry to meet socio-economic needs. Models of trophic structure and energy flow can be used to analyse ecological carrying capacity in order to determine whether a large and rapidly increasing aquaculture industry potentially puts sustainable development at risk. The Yellow River Estuary ecoregion in Shandong Province, China, is an ecologically important region, with extensive bivalve aquaculture that is increasing rapidly at an overall growth rate of 4% annually during recent decades. A trophic mass-balance model was used to analyse the ecological carrying capacity of bivalve aquaculture in this ecoregion. The biomass of cultured bivalves is currently 13.3 t km-2 and could be increased to 62.0 t km-2 without exceeding the ecological carrying capacity. Zooplankton are a key factor limiting the ecological carrying capacity and represent a sensitive functional group within the food web system in this ecoregion. At the ecological carrying capacity of cultured bivalves in the Yellow River Estuary ecoregion, harvests would amount to 353.2 t km-2 yr-1 or a total of 4.2 million t yr-1 in this region. If the current average rate of growth in aquaculture in China is maintained, under cautious development, the biomass of cultured bivalves would reach half of the estimated ecological carrying capacity (31.0 t km-2) after 20 yr. This implies that there is capacity for sustainable development of bivalve aquaculture under current environmental conditions.

Publisher

Inter-Research Science Center

Subject

Management, Monitoring, Policy and Law,Water Science and Technology,Aquatic Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3