Oyster aquaculture does not impede spawning beach access for Atlantic horseshoe crabs Limulus polyphemus

Author:

Munroe DM1,Grothues TM2,Cleary NE3,Daw J1,Estrada S4

Affiliation:

1. Haskin Shellfish Research Laboratory, Rutgers University, 6959 Miller Ave., Port Norris, NJ 08349, USA

2. Department of Marine and Coastal Science, Rutgers University, 800 c/o 132 Great Bay Blvd, Tuckerton, NJ 08087, USA

3. Nicholas School of the Environment, Duke University, 9 Circuit Drive, Durham, NC 27710, USA

4. School of Natural Sciences, Fairleigh Dickinson University, 1000 River Road, Teaneck, NJ 07666, USA

Abstract

Farms for eastern oyster Crassostrea virginica, which are commonly located along shallow estuarine shores of the eastern USA, use a range of farm equipment and require regular access to care for and harvest oyster livestock. In some cases, these farms are located in areas used by Atlantic horseshoe crabs Limulus polyphemus as they come ashore during spring to spawn. The sandy shores of the Delaware Bay host the largest spawning aggregations of this species in the world. Limited studies have examined interactions between horseshoe crabs and intertidal oyster farms, and concern has been raised about the horseshoe crab’s ability to traverse oyster farms to reach spawning habitat. This study examines potential farm interactions with horseshoe crabs in Delaware Bay during the 2018 and 2019 crab spawning season. Our studies included a range of experiments and surveys during high and low tide to observe crab abundance and behavior at rack-and-bag oyster farm and non-farm sites. In all cases, results indicated that crabs can successfully traverse rack-and-bag farms and reach spawning beaches. Crabs do not differentially use farm versus non-farm areas, and crab behavior is relatively unaltered by farm gear. These results provide important context for developing frameworks for managing ecological interactions among farms and wildlife species of concern.

Publisher

Inter-Research Science Center

Subject

Management, Monitoring, Policy and Law,Water Science and Technology,Aquatic Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3