Assessing size-based exposure to microplastic particles and ingestion pathways in zooplankton and herring in a coastal pelagic ecosystem of British Columbia, Canada

Author:

Mahara N1,Alava JJ12,Kowal M3,Grant E3,Boldt JL4,Kwong LE15,Hunt BPV156

Affiliation:

1. Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC V6T 1Z4, Canada

2. Ocean Pollution Research Unit & Nippon Foundation-Ocean Litter Project, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC V6T 1Z4, Canada

3. Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada

4. Fisheries and Oceans Canada (DFO), Nanaimo, BC V9T 6N7, Canada

5. Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada

6. Hakai Institute, Heriot Bay, BC V0P 1H0, Canada

Abstract

Microplastic particles (hereafter 'microplastics') are a widespread class of pollutants in marine environments that can become embedded in food webs. Due to their diverse composition and size, microplastics can enter food webs both directly through consumption and indirectly via trophic transfer. In this study, we investigated potential ingestion pathways of microplastics in an important pelagic food web in coastal British Columbia, Canada. Between March and September 2019, we completed repeat surveys of water, zooplankton, and larval Pacific herring Clupea pallasii at 11 locations in Baynes Sound, Strait of Georgia. Five zooplankton taxa were isolated from each zooplankton sample for specific analysis. Juvenile herring were sampled once in September. Samples were cold-digested with KOH or H2O2 and suspected microplastics isolated. Suspected microplastics were confirmed using μ-Raman spectroscopy and were subsequently identified from the collected samples. The average microplastic concentration in surface waters was 0.59 microplastic particles l-1, and no clear spatial pattern was evident. Average microplastic particle loads were 0.0007 ind.-1 in zooplankton, 0.0017 ind.-1 in larval herring, and 0.089 ind.-1 in juvenile herring. There was a clear difference in the biological:microplastic particle ratio across size fractions (125-250, 250-500, 500-1000, 1000-2000, 2000-4000 µm) in the water column. In size classes <1000 µm, biological particles outnumbered microplastic particles by up to 4 orders of magnitude, whereas for size classes >1000 µm, the ratio decreased to nearly 1. Zooplanktivorous consumers like juvenile herring are more likely to consume microplastics than prey since the ratio of microplastic particles >1000 µm to potential food, and therefore encounter rate, is higher.

Publisher

Inter-Research Science Center

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3