High-resolution fisheries data reveal effects of bivalve dredging on benthic communities in stressed coastal systems

Author:

McLaverty C12,Eigaard OR1,Dinesen GE1,Gislason H1,Kokkalis A1,Erichsen AC3,Petersen JK2

Affiliation:

1. DTU Aqua, National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet, 2800 Kgs. Lyngby, Denmark

2. Danish Shellfish Centre, Øroddevej 80, 7900 Nykøbing Mors, Denmark

3. DHI A/S, Agern Allé 5, 2920 Hørsholm, Denmark

Abstract

Commercial dredging for blue mussels (Mytilus edulis) and oysters (Ostrea edulis, Crassostrea gigas) constitute the main bivalve fisheries in Denmark. These activities predominantly take place in Limfjorden, a large microtidal sound, and in the Inner Danish waters. Both areas are shallow, estuarine, receive high nutrient inputs from agriculture, and are of nature conservation interest (Natura 2000 sites), thus presenting challenges for an ecosystem approach to fisheries management. Using high-resolution fisheries data (~10 m), we investigated the effects of bivalve dredging on benthic communities at both local (Natura 2000 site) and regional (fishery-wide) scales. Regionally, our results showed that dredging intensity correlated with shifts in species composition and reduced community biomass. We were, however, unable to detect an effect of dredging on community density, trait richness, and trait composition. These metrics were significantly related to other environmental drivers, such as sediment organic content (negative) and mussel bed biomass (positive). At the local scale, the observed relationships between dredging, biomass, and species composition varied significantly. This occurred as dredging impacts were greater in areas that contained suitable reference conditions and experienced relatively low levels of disturbance. By contrast, communities which experienced high nutrient loading, regular anoxic events, and high natural variability were relatively unaffected by dredging. Our results therefore highlight the importance of spatial scales in fishing impact estimations. Furthermore, we demonstrate how targeted sampling, high-resolution fisheries data, and suitable reference areas can be used to detect fishery effects in coastal areas that are highly stressed by eutrophication.

Publisher

Inter-Research Science Center

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3