A phylogeny based on cytochrome-c oxidase gene sequences identifies sympatric Ichthyophonus genotypes in the NE Pacific Ocean

Author:

Gregg JL1,Hershberger PK1,Neat AS12,Jayasekera HT1,Ferguson JA3,Powers RL4,Purcell MK4

Affiliation:

1. U.S. Geological Survey - Western Fisheries Research Center, Marrowstone Marine Field Station, 616 Marrowstone Point Road, Nordland, WA 98358, USA

2. Department of Botany and Plant Pathology, Oregon State University, 4575 SW Research Way, Corvallis, OR 97333, USA

3. ADF&G Fish Pathology Section, Division of Commercial Fisheries, 333 Raspberry Road, Anchorage, AK 99518, USA

4. U.S. Geological Survey - Western Fisheries Research Center, 6505 N.E. 65th Street, Seattle, WA 98115, USA

Abstract

In recent decades, evidence has accumulated to suggest that the widespread and highly variable parasite Ichthyophonus hoferi is actually a species complex. Highly plastic morphology and a general lack of defining structures has contributed to the likely underestimate of biodiversity within this group. Molecular methods are a logical next step in the description of these parasites, but markers used to date have been too conserved to resolve species boundaries. Here we use mitochondrial encoded cytochrome-c oxidase (MTCO1) gene sequences and phylogenic analysis to compare Ichthyophonus spp. isolates from several marine and anadromous fish hosts. The resulting phylogeny displays lineage separation among isolates and possible host/niche segregation not previously described. The parasite type that infects Pacific herring Clupea pallasii, Atlantic herring C. harengus, Atlantic salmon Salmo salar, and Pacific staghorn sculpin Oligocottus maculosus (Clade A) is different from that which infects Chinook salmon Oncorhynchus tshawytscha, walleye pollock Gadus chalcogrammus, Greenland halibut Reinhardtius hippoglossoides, and Pacific halibut Hippoglossus stenolepsis (Clade B). MTCO1 sequences confirmed the presence of a more divergent Ichthyophonus sp. isolated from American shad Alosa sapidissima in rivers of eastern North America (Clade C), while American shad introduced to the Pacific Ocean are infected with the same parasite that infects Pacific herring (Clade A). Currently there are no consensus criteria for delimiting species within Ichthyophonidae, but MTCO1 sequences hold promise as a potential species identifying marker and useful epizootiological tool.

Publisher

Inter-Research Science Center

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3