Impaired hatching exacerbates the high CO2 sensitivity of embryonic sand lance Ammodytes dubius

Author:

Baumann H1,Jones LF1,Murray CS2,Siedlecki SA1,Alexander M3,Cross EL4

Affiliation:

1. University of Connecticut, Department of Marine Sciences, 1080 Shennecossett Road, Groton, CT 06340, USA

2. School of Marine and Environmental Affairs and Washington Ocean Acidification Center, University of Washington, 3710 Brooklyn Ave NE, Seattle, WA 98105, USA

3. NOAA Physical Sciences Laboratory, Boulder, CO 80305-3328, USA

4. Southern Connecticut State University, Department of the Environment, Geography, and Marine Sciences, 501 Crescent Street, New Haven, CT 06515, USA

Abstract

Rising oceanic partial pressure of CO2 (pCO2) could affect many traits in fish early life stages, but only few species to date have shown direct CO2-induced survival reductions. This might partly be because species from less CO2-variable, offshore environments in higher latitudes are currently underrepresented in the literature. We conducted new experimental work on northern sand lance Ammodytes dubius, a key forage fish on offshore Northwest Atlantic sand banks, which was recently suggested to be highly CO2-sensitive. In 2 complementary trials, we produced embryos from wild, Gulf of Maine spawners and reared them at several pCO2 levels (~400-2000 µatm) in combination with static (6, 7, 10°C) and dynamic (10→5°C) temperature treatments. Again, we consistently observed large, CO2-induced reductions in hatching success (-23% at 1000 µatm, -61% at ~2000 µatm), and the effects were temperature-independent. To distinguish pCO2 effects during development from potential impacts on hatching itself, some embryos were switched between high and control pCO2 treatments just prior to hatch. This indeed altered hatching patterns, consistent with the CO2-impaired hatching hypothesis. High CO2 also delayed the day of first hatch in one trial and peak hatch in the other, where later-hatched larvae were of similar size but with progressively less endogenous energy reserves. For context, we extracted seasonal pCO2 projections for Stellwagen Bank (Gulf of Maine) from regional ensemble simulations, which indicated a CO2-induced reduction in sand lance hatching success to 71% of contemporary levels by 2100. The species’ unusual CO2 sensitivity has large ecological and scientific ramifications that warrant future in-depth research.

Publisher

Inter-Research Science Center

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3