Microplastic contamination reduces productivity in a widespread freshwater photosymbiosis

Author:

Makin B1

Affiliation:

1. University of Exeter, Penryn Campus, Penryn TR10 9FE, UK

Abstract

Microplastic (plastic particles <5 mm in size) contamination is ubiquitous in nature and known to interact with organisms ranging from microbes to mammals. Notably, recent studies have shown that microplastics may interfere with photosymbiosis, an ecologically important association that has suffered pronounced recent declines in the face of contemporary climate change. However, limited findings thus far have largely focussed on select marine associations. Whether freshwater photosymbioses may also be affected remains poorly understood. Here, I aimed to help bridge this gap by asking whether microplastic contamination impacts several traits (growth rate, symbiont density, metabolic rate and feeding rate) in a common, widespread freshwater photosymbiosis, the Paramecium bursaria-Chlorella spp. association. To address how productivity, an important ecosystem service provided by photosymbiosis globally, could be affected, I also measured changes in photosymbiotic net productivity (net photosynthesis rate). To do so, I exposed the symbiosis to microplastics (microbeads extracted from commercial face wash) under laboratory conditions. My key result was that, compared with non-contaminated control cultures, the contaminated symbiosis demonstrated lower net productivity. This response raises concern for primary production rates in freshwater ecosystems contaminated with microplastics, adding to an established story of widespread degradation associated with microplastic pollution globally.

Publisher

Inter-Research Science Center

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3