Inferring diet, feeding behaviour and causes of mortality from prey-induced injuries in a New Zealand fur seal

Author:

Hocking DP12,Marx FG123,Parker WMG12,Rule JP124,Cleuren SGC1,Mitchell AD5,Hunter M6,Bell JD78,Fitzgerald EMG12,Evans AR12

Affiliation:

1. School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia

2. Geosciences, Museums Victoria, Melbourne, Victoria 3001, Australia

3. Museum of New Zealand Te Papa Tongarewa, Wellington 6011, New Zealand

4. Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia

5. Department of Environment, Land, Water and Planning, Orbost, Victoria 3888, Australia

6. Gembrook Veterinary Clinic, Gembrook, Victoria 3783, Australia

7. Victorian Fisheries Authority, Queenscliff, Victoria 3225, Australia

8. Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7004, Australia

Abstract

New Zealand fur seals Arctocephalus forsteri are the most abundant of the 4 otariid (eared seal) species distributed across Australasia. Analyses of stomach contents, scats and regurgitates suggest a diet dominated by bony fish and squid, with cartilaginous species (e.g. sharks and rays) either absent or underrepresented because of a lack of preservable hard parts. Here we report on a subadult specimen from south-eastern Australia, which was found ashore emaciated and with numerous puncture wounds across its lips, cheeks, throat and the inside of its oral cavity. Fish spines embedded in the carcass revealed that these injuries were inflicted by chimaeras and myliobatiform rays (stingrays and relatives), which matches reports on the diet of A. forsteri from New Zealand, but not South Australia. Shaking and tearing of prey at the surface may help to avoid ingestion of the venomous spines, perhaps contributing to their absence from scats and regurgitates. Nevertheless, the number and severity of the facial stab wounds, some of which led to local necrosis, likely affected the animal’s ability to feed, and may account for its death. Despite their detrimental effects, fish spine-related injuries are difficult to spot, and may be a common, albeit cryptic, type of trauma. We therefore recommend that stranded seals be systematically examined for this potentially life-threatening pathology.

Publisher

Inter-Research Science Center

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3