Nitrogen cycling in coastal sediment microbial communities with seasonally variable benthic nutrient fluxes

Author:

Marshall AJ123,Longmore A4,Phillips L25,Tang C1,Hayden HL2,Heidelberg KB6,Mele P12

Affiliation:

1. La Trobe University, AgriBio Centre for AgriBiosciences, Melbourne, VIC 3086, Australia

2. Agriculture Victoria, Department of Jobs, Precincts and Regions, AgriBio, Centre for AgriBiosciences, Melbourne, VIC 3086, Australia

3. University of Waikato, Hillcrest, Hamilton 3216, New Zealand

4. Centre for Aquatic Pollution Identification and Management, Melbourne University, Parkville, VIC 3010, Australia

5. Agriculture and Agri-Food Canada, Harrow Research and Development Centre, Harrow, ON N0R1G0, Canada

6. The University of Southern California, Department of Biology, Los Angeles, CA 90089, USA

Abstract

Benthic microbial communities contribute to nitrogen (N) cycling in coastal ecosystems through taxon-specific processes such as anammox, nitrification and N-fixation and community attributed pathways such as denitrification. By measuring the total (DNA-based) and active (RNA-based) surface sediment microbial community composition and the abundance and activity profiles of key N-cycling genes in a semi-enclosed embayment—Port Phillip Bay (PPB), Australia—we show that although the total relative abundance of N-cycling taxa is comparatively lower close to estuary inputs (Hobsons Bay [HB]), the capacity for this community to perform diverse Ncycling processes is comparatively higher than in sediments isolated from inputs (Central PPB [CPPB]). In HB, seasonal structuring of the sediment microbial community occurred between spring and summer, co-occurring with decreases in the activity profiles of anammox bacteria and organic carbon content. No changes were detected in the activity profiles of nitrifiers or the community-based pathway denitrification. Although no seasonal structuring of the sediment microbial community occurred in CPPB, the activity profiles of key N-cycling genes displayed comparatively higher within-site variability. These results show that despite N-cycling taxa representing a smaller fraction of the total community composition in estuary impacted sediments (HB) these microbial communities consistently engage in N-cycling processes and that seasonal instability in the composition of this community is not reflective of changes in its capacity to cycle N through coupled nitrification-denitrification but potentially via changes within the anammox community.

Publisher

Inter-Research Science Center

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3