Historical imprints on genetic population structure in direct-developing beach whelks (Bullia digitalis)

Author:

Bezuidenhout K1,Nel R12,Schoeman D13,Grant WS4,Hauser L12

Affiliation:

1. Zoology Department, Nelson Mandela University, Port Elizabeth 6301, South Africa

2. School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98105, USA

3. Ocean Futures Research Cluster, School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia

4. College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Juneau, AK 99801, USA#define "category"

Abstract

Marine organisms often show deep genetic divergence between lineages that are characterized by shallow population structure. The distinction of historical and contemporary demographic forces in creating and maintaining these genetic patterns is crucial for management and conservation. In this study, we examined the genetic population structure of Bullia digitalis, a lecithotrophic sandy beach whelk that lacks a pelagic larval phase and is thus expected to show limited connectivity between populations. Mitochondrial (mt)DNA cytochrome c oxidase subunit I (COI; 540 bp, n = 214) and a reanalysis of allozyme data (14 loci, n = 735) among populations along the cool southeast Atlantic (west) and warm-temperate southwest Indian Ocean (south) coasts of southern Africa showed a strong phylogeographic break across Cape Point with mtDNA (ΦRT = 0.6, p < 0.001), but a weak break with allozymes (FRT = 0.002, p = 0.004). MtDNA gene flow occurred asymmetrically from the west to the south coast. Although there was no mtDNA differentiation between populations on either side of that break (ΦSR = 0.0), there was weak but significant isolation by distance (IBD) among south coast samples (r2 = 0.20, p = 0.039). In contrast, significant allozyme differentiation was detected on small spatial scales but without overall IBD. MtDNA mismatch analysis indicated a recent range expansion, suggesting historic population expansions, most likely during periods of lower sea levels and greater habitat continuity along southern African shores. Thus, the apparent mtDNA connectivity among populations of beach whelks likely reflects historic, rather than contemporary, gene flow.

Publisher

Inter-Research Science Center

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3