Climate resilience of irrigated quinoa in semi-arid West Africa

Author:

Alvar-Beltrán J1,Gobin A23,Orlandini S1,Dao A4,Marta AD1

Affiliation:

1. Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence 50144, Italy

2. Flemish Institute for Technological Research (VITO), Mol 2400, Belgium

3. Faculty of Bioscience Engineering, University of Leuven, Leuven 3001, Belgium

4. Institut de l’Environnement et de Recherches Agricoles (INERA), Bobo Dioulasso BP910, Burkina Faso

Abstract

Quinoa (Chenopodium quinoa Willd.) is a herbaceous C3 crop that has demonstrated resilience in regions concurrently affected by climate change and food insecurity, such as sub-Saharan Africa (SSA). The photosynthetic rate and productivity of C3 crops are enhanced under increasing CO2 concentrations. We looked at future climate trends in SSA to estimate their impacts on quinoa yields in Burkina Faso. Climate projections show a temperature increase of 1.67-4.90°C under Representative Concentration Pathways (RCP) 4.5 and 8.5, respectively by the end of the century. We demonstrate that any further climate disturbances can either be beneficial or harmful for quinoa, and modulating climate risks will depend on the decisions made at the farm level (e.g. planting date and crop choice). Crop modelling supports the identification of the most suitable transplanting dates based on future climate conditions (RCP 4.5 and 8.5), agroclimatic zones (Sahel, Soudano-Sahelian and Soudanian) and time-horizons (2020, 2025, 2050 and 2075). We show that quinoa yields can improve—when grown under irrigated conditions and transplanted in November—by about 14-20% under RCP 4.5 and by 24-33% under RCP 8.5 by 2075 across the Sahel and Soudanian agroclimatic zones, respectively. For the Soudano-Sahelian zone, the highest yield improvements (19%) are obtained when transplanting is assumed in December under RCP 8.5 by 2075. Overall, the findings of this work encourage policymakers and agricultural extension officers to further promote climate-resilient and highly nutritious crops. Such possibilities are of much interest in SSA, thought to be highly vulnerable to climate change impacts where millions of people are already experiencing food insecurity.

Publisher

Inter-Research Science Center

Subject

Atmospheric Science,General Environmental Science,Environmental Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3