Effects of dead conspecifics, hunger states, and seasons on the foraging behavior of the purple urchin Heliocidaris crassispina

Author:

Belleza DFC1,Kawabata Y1,Toda T2,Nishihara GN3

Affiliation:

1. Graduate School of Fisheries and Environmental Science, Nagasaki University, Nagasaki 852-8521, Japan

2. Faculty of Science and Engineering, Soka University, Tokyo 192-8577, Japan

3. Organization for Marine Science and Technology, Institute for East China Sea Research, Nagasaki University, Nagasaki 851-2213, Japan

Abstract

Trophic cascades are a powerful result of predator-prey relationships in an ecosystem. In aquatic environments, the signals associated with predators and predation are used by prey as a cue to avoid encountering predators when foraging for food. These behavioral cues can be powerful enough to control prey populations and indirectly protect primary producers. Here, we evaluated the effects of cues associated with predation on the purple urchin Heliocidaris crassispina and examined effects of hunger state and season, using time-lapse photography. A series of laboratory and in situ manipulative experiments were conducted to determine patterns of foraging behavior and behavioral modifications. We showed that starved urchins were less sensitive to predation cues compared to normally fed urchins. Field experiments indicated that 70% of fed urchins fled when exposed to a predation cue (presence of a dead urchin) whereas starved urchins remained regardless of the cue, supporting results from the laboratory using dead urchin and algal cues. Sea urchin activity and feeding rates were lower in winter-spring than in summer-autumn. Results suggest that hunger state has a large influence over the behavioral response of sea urchins, while also being affected by season due to metabolic control. In general, starvation appears to override predator avoidance behaviors, which exposes prey species to higher risks of predation.

Publisher

Inter-Research Science Center

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3