Harmful algal blooms as a sink for inorganic nutrients in a eutrophic estuary

Author:

Lemley DA12,Adams JB12,Largier JL34

Affiliation:

1. Botany Department and the Institute for Coastal and Marine Research, Nelson Mandela University, Port Elizabeth 6031, South Africa

2. DSI/NRF Research Chair in Shallow Water Ecosystems, Nelson Mandela University, Port Elizabeth 6031, South Africa

3. Department of Environmental Science and Policy, University of California, Davis, California 95616, USA

4. Coastal and Marine Sciences Institute, University of California, Davis, Bodega Bay, California 94923, USA

Abstract

Phytoplankton-mediated nutrient fluxes typically provide only pulsed relief to adjacent coastal waters during the productive period, with nutrient export increasing in the absence of substantial phytoplankton biomass. On the warm temperate coastline of South Africa, the Sundays Estuary is characterised by highly regulated freshwater inflow patterns, nutrient-enriched conditions, and resident harmful algal blooms (HABs). Given these attributes, the study objective was to investigate the effect of these phytoplankton blooms on fluvial inorganic nutrient dynamics. To assess uptake, we analysed inorganic nutrient (phosphate, ammonium, NOx) and phytoplankton concentrations in relation to salinity using data from 17 surveys. Property-salinity mixing diagrams and statistical analyses indicated a positive association between increasing phytoplankton biomass and decreasing NOx flux (p < 0.001), and to a lesser degree phosphate flux (p = 0.22), along the gradient from low-salinity inner estuary to high salinity outer estuary. High biomass HAB accumulations of Heterosigma akashiwo (>100 µg chl a l-1) represent significant removal of available NOx (~100%) and phosphate (>75%) during warmer conditions (>20°C). These events, together with continuous inorganic nutrient uptake during less severe bloom conditions, remove a substantial portion of annual NOx and phosphate loads (36.5 and 36.4% flux, respectively). Although this buffers inorganic nutrient loading to adjacent coastal waters, it also represents an emerging legacy pollution issue in the form of a benthic accumulation of organic material in bottom waters subject to recurrent hypoxia. Future management efforts should adopt an ecosystem-based approach centred around simultaneous restoration of hydrological variability and dual nutrient reduction strategies (N and P).

Publisher

Inter-Research Science Center

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3