Immunoassays and diagnostic antibodies for Perkinsus spp. pathogens of marine molluscs

Author:

Hanrio E12,Batley J1,Dungan CF3,Dang C12

Affiliation:

1. The University of Western Australia, Crawley 6009, Western Australia, Australia

2. Department of Primary Industries and Regional Development, Government of Western Australia, Perth 6000, Western Australia, Australia

3. Maryland Department of Natural Resources, Cooperative Oxford Laboratory, Oxford, Maryland 21654, USA

Abstract

Perkinsus sp. protozoans are parasites of a wide variety of molluscs around the world and are responsible for episodes of mass mortalities and large economic losses for aquaculture industries and fisheries. The first step towards the management of infectious episodes is the reliable detection of Perkinsus species. While historic methods for diagnosis of Perkinsus sp. infections in mollusc hosts include histological, in vitro, molecular-genetic, and immunoassays, antibody-based diagnostic assays may prove most practical with development of improved reagents and techniques. This paper reviews historic developments of antibodies against Perkinsus species, and of diagnostic immunoassays. Thirteen research papers reported the development of antibodies against Perkinsus sp. or their extracellular products, mainly P. olseni and P. marinus. Nine of those tested the cross-reactivity of their antibodies against different life stages or species than the one used as immunogen. While all antibodies raised against trophozoites labelled hypnospores, several antibodies raised against hypnospores did not label trophozoites, suggesting antigenic differences between those cell types. Antibody specificity studies showed that there is antigenic heterogeneity between Perkinsus species and Perkinsus-like organisms, and also that common epitopes occur among Perkinsus species, as well as some dinoflagellates. This review summarizes the current knowledge and aims at helping the future development of Perkinsus species-specific antibodies and immunoassays.

Publisher

Inter-Research Science Center

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3