Acipenserid herpesvirus 2 genome and partial validation of a qPCR for its detection in white sturgeon Acipenser transmontanus

Author:

Quijano Cardé EM1,Anenson K1,Waldbieser G2,Brown CT1,Griffin M3,Henderson E1,Yun S1,Soto E1

Affiliation:

1. University of California-Davis, Davis, California 95616, USA

2. United States Department of Agriculture - Agricultural Research Service, Stoneville, Mississippi 38776, USA

3. Mississippi State University, Stoneville, Mississippi 38776, USA

Abstract

White sturgeon Acipenser transmontanus is the primary species used for caviar and sturgeon meat production in the USA. An important pathogen of white sturgeon is acipenserid herpesvirus 2 (AciHV-2). In this study, 4 archived isolates from temporally discrete natural outbreaks spanning the past 30 yr were sequenced via Illumina and Oxford Nanopore Technologies platforms. Assemblies of approximately 134 kb were obtained for each isolate, and the putative ATPase subunit of the terminase gene was selected as a potential quantitative PCR (qPCR) target based on sequence conservation among AciHV-2 isolates and low sequence homology with other important viral pathogens. The qPCR was repeatable and reproducible, with a linear dynamic range covering 5 orders of magnitude, an efficiency of approximately 96%, an R2 of 0.9872, and an analytical sensitivity of 103 copies per reaction after 35 cycles. There was no cross-reaction with other known viruses or closely related sturgeon species, and no inhibition by sturgeon DNA. Clinical accuracy was assessed from white sturgeon juveniles exposed to AciHV-2 by immersion. Viral culture (gold standard) and qPCR were in complete agreement for both cell culture negative and cell culture positive samples, indicating that this assay has 100% relative accuracy compared to cell culture during an active outbreak. The availability of a whole-genome sequence for AciHV-2 and a highly specific and sensitive qPCR assay for detection of AciHV-2 in white sturgeon lays a foundation for further studies on host-pathogen interactions while providing a specific and rapid test for AciHV-2 in captive and wild populations.

Publisher

Inter-Research Science Center

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3