Diel fish migration facilitates functional connectivity of coral reef and seagrass habitats via transport of ectoparasites

Author:

Hendrick GC1,Nicholson MD1,Narvaez P23,Sun D4,Packard A5,Grutter AS4,Sikkel PC16

Affiliation:

1. Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Coral Gables, FL 33124, USA

2. ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia

3. Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia

4. The School of the Environment, The University of Queensland, St. Lucia, QLD 4072, Australia

5. Center for Marine and Environmental Studies, University of the Virgin Islands, St. Thomas, USVI 00802

6. Water Research Group, Unit of Environmental Sciences and Management, North-West University, Potchefstroom, South Africa

Abstract

Connectivity between habitats and ecological communities is a critical component of trophic structure. Coral reef systems include reef, seagrass, and mangrove habitats, and the movement of fishes is a key component of habitat connectivity among them. Fishes that undergo diel migrations between habitats are among the best-studied functional groups. Studies on their role in energetic connectivity between adjacent habitats have not considered the possible contribution of parasites. Some diel-migratory species are both highly susceptible to and disproportionately exploited by gnathiid isopods, temporary, tick-like parasites of marine fishes. By leaving the reef at night, diel-migratory fishes reduce their overall exposure to gnathiids, which are more active at night and more abundant in reef habitat. Here we show that for sites in both the Caribbean and the Great Barrier Reef, gnathiids are attached to diel-migratory fishes at the time they depart reef habitat. Because gnathiids associate temporarily with host fishes, they can be acquired by hosts in one habitat and can become dislodged and deposited in another. Field experiments in the Caribbean show that gnathiids from reef habitat dislodge in seagrass habitat, where they likely remain until their next feeding. Sequencing blood meals from free-living gnathiids in seagrass beds, where they are least abundant, shows that diel-migratory and other transient fishes are the most frequently exploited hosts, confirming that deposition of gnathiids in seagrass is facilitated mainly by migratory hosts. These findings have important implications for trophic, population-genetic, and disease connectivity involving gnathiid isopods and potentially other external parasites.

Publisher

Inter-Research Science Center

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3