Resolving community metabolism of eelgrass Zostera marina meadows by benthic flume-chambers and eddy covariance in dynamic coastal environments

Author:

Camillini N12,Attard KM23,Eyre BD1,Glud RN24

Affiliation:

1. Centre for Coastal Biogeochemistry, Faculty of Science and Engineering, Southern Cross University, 2480 Lismore, New South Wales, Australia

2. Department of Biology, Hadal & Nordcee, University of Southern Denmark, 5230 Odense M, Denmark

3. Tvärminne Zoological Station, University of Helsinki, J.A. Palménin tie 260, 10900 Hanko, Finland

4. Department of Ocean and Environmental Sciences, Tokyo University of Marine Science and Technology, 26 108-8477 Tokyo, Japan

Abstract

Sediment resuspension is a common process in dynamic coastal settings, but its implications for remineralization and carbon turnover in seagrass meadows are poorly understood. Here, we assessed eelgrass Zostera marina metabolism in the Baltic Sea (SW Finland) using benthic flume-chambers and aquatic eddy covariance to critically evaluate the drivers of benthic O2 exchange during dynamic flow conditions. During quiescent weather conditions, the 2 methods resolved similar metabolic rates and net ecosystem autotrophy (±11% of each other). However, elevated flow speeds and sediment resuspension halfway through the study induced a 5-fold increase in the O2 uptake rates measured by eddy covariance, whereas chamber fluxes remained relatively unchanged. Following particle resettlement, instruments were redeployed and the benthic O2 uptake resolved by both techniques was just ~30% of the values measured before resuspension. Laboratory investigations revealed sediment resuspension could potentially increase benthic O2 uptake up to 6fold, mainly due to the reoxidation of reduced compounds (e.g. FeSx). This process was fully captured by the eddy O2 fluxes, but not by the chamber incubation. Consequently, the chamber and eddy net ecosystem metabolism amounted to -17 and -824 mmol C m-2, respectively, throughout the study period. The rapid reoxidation and long-term effects of resuspension on benthic O2 dynamics highlight the importance of fully capturing dynamic conditions when assessing the overall carbon turnover in coastal habitats. Future studies on the biogeochemical functioning of coastal environments should aim to capture the natural frequency and duration of resuspension events.

Publisher

Inter-Research Science Center

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3