Plant-fungal symbiosis responds to experimental addition of resources and physical stressor in a salt marsh

Author:

Moore AFP1,Gehring CA2,Hughes AR1

Affiliation:

1. Northeastern University, Marine Science Center, 430 Nahant Rd., Nahant, MA 01945, USA

2. Northern Arizona University, Department of Biological Sciences, 617 S. Beaver St., Flagstaff, AZ 86011, USA

Abstract

Plant-fungal symbioses can have strong consequences for ecological communities and are sensitive to variation in abiotic factors. While the functions of mycorrhizal fungi are well established, the role of other root-colonizing fungi such as dark septate endophytes (DSE), which lack specialized structures for nutrient transfer, are less clear. DSE are ubiquitous in extreme and stressful ecosystems, including marine environments, and some studies suggest a potential role in plant nutrition. However, the response of DSE to nutrient availability and physical stress has rarely been tested in the field. We conducted a 10 mo field experiment to investigate how a symbiosis between the salt marsh plant Spartina alterniflora and DSE fungi responded to increased resources (nutrient addition) and physical stress (salt addition). Plant stem density and height increased in response to nutrient enrichment, consistent with past experiments in nutrient-limited marsh systems. Nutrient additions also increased S. alterniflora percent cover, but this effect was negated with elevated salinity. Nutrient addition decreased colonization by DSE hyphae by nearly half (8.8%, vs. 15.7% at ambient levels). Nutrients did not decrease DSE microsclerotia, which were marginally increased with the combination of added nutrients and salinity. These results are consistent with the view that plant-DSE interactions are based in part on enhanced nutritional condition of plants by fungi. In addition, there was a positive relationship between plant shoot growth and root colonization by DSE, suggesting a benefit of the association for the plants. Our results suggest that the poorly understood plant-DSE symbioses may be important in intertidal environments.

Publisher

Inter-Research Science Center

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3