The northern Bering Sea zooplankton community response to variability in sea ice: evidence from a series of warm and cold periods

Author:

Kimmel DG1,Eisner LB1,Pinchuk AI2

Affiliation:

1. Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle WA 98115, USA

2. College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Juneau, AK 99801, USA

Abstract

Recent, unprecedented losses of sea ice have resulted in widespread changes in the northern Bering Sea ecosystem, and this study explores the zooplankton community response. Time-series observations were used to identify zooplankton community changes in the northern (>60°N) Bering Sea (NBS) over a 17 yr period (2002-2018). The overall objective was to determine if the changes in zooplankton populations previously described for the southeastern Bering Sea shelf (<60°N) were also observed in the NBS over alternating warm and cold periods. Particular attention was paid to more recent (2014-2018) years that showed significant losses of sea ice in the NBS (2017/2018) in comparison to a prior warm period (2003-2005) and an intervening cold period (2006-2013). A multivariate framework (redundancy analysis) was used to explore correlations with environmental conditions, and differences in mean abundance across the differing warm and cold periods were tested. The NBS zooplankton community had different responses across each warm and cold period, and the primary driver for the differences in response was sea ice. Redundancy analysis demonstrated that the zooplankton community during the second warm period experienced greater variability compared to the prior warm period. The zooplankton community had higher abundances of small copepods and meroplankton and reduced abundances of Calanus spp. and chaetognaths during the most recent warm period. This suggests that the NBS zooplankton will not be impacted by reduced sea ice when the ice coverage extends south of 60°N, but show community change once a minimum threshold in ice extent and timing of retreat is reached. Shifts in the zooplankton community may have had cascading effects on higher trophic levels that were evident during the latter warm period.

Publisher

Inter-Research Science Center

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3