Variation in top-down control of red algae epibiosis in the White Sea

Author:

Chava A12,Artemieva A2,Yakovis E2

Affiliation:

1. P.P. Shirshov Institute of Oceanology, RAS, Laboratory of Ecology of Coastal Benthic Communities, Moscow 117997, Russia

2. St.-Petersburg State University, Department of Invertebrate Zoology, Saint-Petersburg 199034, Russia

Abstract

Epibiosis is shaped by a complex interplay of biotic interactions involving hosts, epibionts, and mobile consumers. In temperate waters, consumer control by mesograzers prevents complete overgrowth of seaweeds. In polar waters, the mechanisms determining the abundances of sessile organisms associated with seaweeds are unknown. We empirically assessed the strength of the consumer control effect on the colonization of the sub-arctic red seaweed Phycodrys rubens by caging individual plants in the field in the shallow subtidal of the White Sea (65°N). We compared epibiosis on plants in consumer exclosure cages, in cages with the mesopredatory shrimp Spirontocaris phippsii, in semi-enclosed cages, and on unmanipulated plants in a cold year (2014) and a warm year (2015). Despite the dramatic interannual variation in consumer control, the mean total cover of epibionts in the absence of consumers never exceeded 15%. While consumers had a substantial effect on the total epibiont cover in the warm year and a nearly negligible effect in the cold year, the total cover of unmanipulated algae was similar in 2014 and 2015. Bryozoans, which were selectively impacted by consumers—particularly shrimp—dominated in both years. However, bryozoan abundance was much lower in 2015, when the abundance of hydroids, sponges, and bivalves—less affected by consumers—increased. Consumer control is not a key factor preventing most Phycodrys plants from being heavily overgrown. Yet, smaller plants, which have a higher epibiont cover, may indirectly benefit from consumers. Future climate changes are likely to make the Phycodrys epibiosis increasingly top-down regulated.

Publisher

Inter-Research Science Center

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3