Patch dynamics driven by wave exposure in subtidal temperate seaweeds are exacerbated by warming oceans

Author:

Mulders Y12,Mattio L34,Phillips JC5,Lavery PS6,Kendrick GA12,Wernberg T127

Affiliation:

1. UWA Oceans Institute, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia

2. School of Biological Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia

3. Department of Biological Sciences, University of Cape Town, Rondebosch 7701, South Africa

4. blue[c]weed, 29200 Brest, France

5. Water Corporation, Leederville, WA 6007, Australia

6. Centre for Marine Ecosystem Research, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia

7. Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark

Abstract

Over the past decades, ocean temperatures have been steadily increasing and are projected to continue to do so, stressing many temperate marine organisms. Changing temperatures do not affect ecosystems in isolation, but interact with many other factors in shaping ecological communities. We investigated the changes over 2 decades in subtidal temperate seaweed communities over a wave exposure gradient in Western Australia, a global warming hotspot. We found higher diversity in the seaweed community and a higher proportion of biomass of species with a warm affinity (expressed as the tropicalization index: TI) over time. There was no decline in biomass of the dominant habitat-forming kelp Ecklonia radiata on low wave exposure reefs, while it was patchier and comprised a lower proportion of the total seaweed biomass on the medium and high wave exposure reefs. Furthermore, the presence of E. radiata was disproportionally associated with low abundances of seaweeds with warm affinity. The increasing patchiness of E. radiata likely provided a competitive release for other seaweeds, and the increase in abundance of Scytothalia dorycarpa likely provided a compensatory effect which resulted in a lower than expected TI. We found no indication of an ameliorating effect by wave exposure, and conclude that the patch dynamics driven by wave exposure are more likely exacerbated by increasing ocean temperatures on subtidal temperate reefs. If this continues, the reduction in E. radiata and increase in warm affiliated seaweeds will result in a more diverse seaweed community, but one with a lower standing biomass.

Publisher

Inter-Research Science Center

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3