Recovery of salt marsh vegetation after ice-rafting

Author:

Nordio G1,Fagherazzi S1

Affiliation:

1. Boston University, Earth and Environment Department, Boston, MA 02215, USA

Abstract

Sediment transport on salt marsh platforms is usually brought about through storm events and high tides. At high latitudes, ice-rafting is a secondary mechanism for sediment transport, redistributing sediment from tidal flats, channels, and ponds to marshland. In January 2018, winter storm Grayson hit the North Atlantic coast, producing a large storm surge and a significant decrease in temperature. The Great Marsh in Plum Island Sound, Massachusetts, USA, experienced an unprecedented sediment deposition due to ice-rafting, burying marsh vegetation. Plant vegetation recovery was investigated in 17 sediment patches, dominated by Spartina patens, Distichlis spicata, Juncus gerardi, and S. alterniflora. The analysis was carried out considering the number of stems and stem height for each vegetation species. D. spicata firstly occupied bare patches, while S. patens, once smothered by sediment, regrew slowly. The number of stems of S. patens inside the sediment patches recovered, on average, after 2 growing seasons. The number of J. gerardi stems was not significantly affected by ice-rafted sediment deposition. S. alterniflora dynamics were different depending on physical and edaphic conditions. At some locations, S. alterniflora did not recover after sediment deposition. The deposition of the sediment layer had a positive effect on vegetation vigor, increasing stem height and maintaining high stem density. The results suggest a beneficial effect of sediment deposition not only for marsh accretion, but also for marsh vegetation growth, both of which are fundamental for marsh restoration.

Publisher

Inter-Research Science Center

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3