Spatial variability of epi- and mesopelagic 38 kHz backscatter from nekton and macrozooplankton across the southeastern US shelf break

Author:

Blair HB1,Miksis-Olds JL2,Warren JD1

Affiliation:

1. School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, NY 11968, USA

2. Center for Acoustics Research and Education, University of New Hampshire, Durham, NH 03824, USA

Abstract

Acoustic echosounders collect detailed information on the location of patchily distributed pelagic organisms over varying spatial scales. This study measured the spatial variability of epi- and mesopelagic 38 kHz backscatter along the US Mid- and South Atlantic continental shelf and slope. We used variogram analysis to estimate the horizontal spatial structure of backscatter measurements, examined whether environmental variables might affect these estimates, and assessed potential impacts of acoustic survey design. Backscatter data were collected during ship-based surveys (50-100 km2) at 7 sites during 4 cruises between November 2017 and November 2019. Average patch size estimates were consistently between 2 and 4 km among locations. Modeled variogram range varied significantly with the depth of the backscatter layer, but linear effect sizes were negligible (<1 m). Chlorophyll a (chl a) concentration had a significant positive effect on range (95 m), suggesting that patch sizes are slightly larger in the epipelagic where chl a concentration is higher. Incorporating variogram parameters of range, sill, and nugget produced some clustering of spatial correlation parameters with scattering layer depth, particularly for the deepest sites assessed (700-900 m depth). Spatial characteristics of a given location were not significantly different between surveys of the same size, but sometimes differed with smaller (25% of area) survey sizes. These results offer insight into nekton and macrozooplankton backscatter patterns in important shelf break and slope systems across horizontal and vertical dimensions, and provide needed information for monitoring fine- to mesoscale offshore marine habitat areas.

Publisher

Inter-Research Science Center

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3