Time-series of direct primary production and phytoplankton biomass in the southeastern Bering Sea: responses to cold and warm stanzas

Author:

Lomas MW1,Eisner LB23,Gann J3,Baer SE4,Mordy CW56,Stabeno PJ5

Affiliation:

1. Bigelow Laboratory for Ocean Sciences, East Boothbay, ME 04544, USA

2. NOAA Alaska Fisheries Science Center, Seattle, WA 98115, USA

3. NOAA Alaska Fisheries Science Center, Auke Bay Laboratories, Juneau, AK 99801, USA

4. Maine Maritime Academy, Castine, ME 04420, USA

5. NOAA Pacific Marine Environmental Laboratory, Seattle, WA 98115, USA

6. Joint Institute for the Study of the Atmosphere and Oceans, University of Washington, Seattle, WA 99185, USA

Abstract

Sub-Arctic and Arctic regions are warming faster than nearly all other areas of the global ocean, leading to significant changes in ice quality and the duration of ice-covered periods. The impacts of this warming and sea ice variability on higher trophic levels in the Bering Sea is well documented, but the effects on lower trophic levels are less well understood. Phytoplankton biomass (as chlorophyll a [chl a]) and primary and nitrogen production measurements in the Bering Sea are presented from 2006-2016, a period that covers relatively colder (2007-2012) and warmer (2014-2016) temperature regimes. In warm spring periods, relative to cold spring periods, the frequency of subsurface chl a maxima increased, but with no significant differences in integrated chl a inventories. In contrast, cold fall periods were characterized by greater integrated chl a inventories than warm fall periods. Integrated net primary production (NPP) increased from the cold period (2007-2011) to the warm period (2014-2016). The difference in patterns in chl a and NPP resulted in higher phytoplankton growth rates during warm periods. Nitrate uptake rates increased from spring to fall during cold periods, while rates decreased from spring to fall during warm periods, suggesting changes in the balance of new versus regenerated production. While changes in phenological timing cannot be ruled out, changes in phytoplankton growth rate appear more important than changes in chl a biomass underlying increasing daily NPP. This distinction directly impacts our understanding of the linkages between warming temperatures and phytoplankton production and its implications in evaluating and understanding energy flow to higher trophic levels.

Publisher

Inter-Research Science Center

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3