Compound-specific isotope analysis of amino acids reveals dependency on grazing rather than detritivory in mangrove food webs

Author:

Harada Y1,Lee SY2,Connolly RM1,Fry B3

Affiliation:

1. Coastal and Marine Research Centre, Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, Queensland 4222, Australia

2. Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, PR China

3. Australian Rivers Institute, Griffith University, Nathan, Queensland 4111, Australia

Abstract

Colonisation of decaying leaves fallen from mangrove trees by bacteria and fungi is thought to play an important role at the base of food webs in most tropical estuaries. Compound-specific isotope analysis of amino acids (CSIA-AA) has enabled the previously difficult methodological task of measuring plant, bacterial and fungal energy flows to food webs. Here, we assessed the biosynthetic origins of amino acids at the base of a mangrove food web using the CSIA-AA approach. Trophic positions of the 2 most common mangrove fauna—fiddler crabs and sesarmid crabs—estimated from nitrogen isotopes in phenylalanine and glutamic acid approached 2, suggesting that these species are herbivores rather than microbivores. Consistent with this finding, carbon isotope fingerprints in AAs did not support the importance of essential AAs derived from fungi and bacteria but rather suggested the importance of those originating from plants, especially microalgae. These results suggest that (1) microbial mineralization of decaying leaves supports the production of more easily assimilated microalgae and (2) bacteria and fungi, as intermediates, also routinely incorporate plant-derived AAs into their biomass.

Publisher

Inter-Research Science Center

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3