Simultaneous Utilization of Mood Disorder Questionnaire and Bipolar Spectrum Diagnostic Scale for Machine Learning-Based Classification of Patients With Bipolar Disorders and Depressive Disorders

Author:

Kim KyungwonORCID,Lim Hyun JuORCID,Park Je-MinORCID,Lee Byung-DaeORCID,Lee Young-MinORCID,Suh HwagyuORCID,Moon EunsooORCID

Abstract

Objective Bipolar and depressive disorders are distinct disorders with clearly different clinical courses, however, distinguishing between them often presents clinical challenges. This study investigates the utility of self-report questionnaires, the Mood Disorder Questionnaire (MDQ) and Bipolar Spectrum Diagnostic Scale (BSDS), with machine learning-based multivariate analysis, to classify patients with bipolar and depressive disorders.Methods A total of 189 patients with bipolar disorders and depressive disorders were included in the study, and all participants completed both the MDQ and BSDS questionnaires. Machine-learning classifiers, including support vector machine (SVM) and linear discriminant analysis (LDA), were exploited for multivariate analysis. Classification performance was assessed through cross-validation.Results Both MDQ and BSDS demonstrated significant differences in each item and total scores between the two groups. Machine learning-based multivariate analysis, including SVM, achieved excellent discrimination levels with area under the ROC curve (AUC) values exceeding 0.8 for each questionnaire individually. In particular, the combination of MDQ and BSDS further improved classification performance, yielding an AUC of 0.8762.Conclusion This study suggests the application of machine learning to MDQ and BSDS can assist in distinguishing between bipolar and depressive disorders. The potential of combining high-dimensional psychiatric data with machine learning-based multivariate analysis as an effective approach to psychiatric disorders.

Funder

Biomedical Research Institute

Pusan National University Hospital

Publisher

Korean Neuropsychiatric Association

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3