Upgrading the Measurement of Membrane Hydraulic Conductivity and the Osmotically Inactive Volume of Protoplasts for Evaluating the Freshness of Postharvest Leafy Vegetables

Author:

Kuroki Shinichiro,Tanaka Mai,Itoh Hiromichi,Nakano Kohei,Sotome Itaru

Abstract

HighlightsA method to simultaneously determine membrane water permeability (Lp) and nonosmotic volume (Vb) is proposed.The proposed method revealed that Vb was neither proportional nor constant to the protoplast size.Individually determined Vb improved accurate estimation of Lp.During storage, Lp increased and Vb decreased in spinach leaves, which may well indicate produce freshness.Abstract. Membrane water permeability is of great importance to better understand the mechanism of water loss; however, its correct understanding and measurement is still an issue. We proposed and tested the efficacy of a numerical analytic approach for the simultaneous determination of the hydraulic conductivity (Lp) and relative osmotically inactive volume (b) of protoplasts isolated from spinach mesophyll tissue. The new approach revealed that the osmotically inactive volume was neither proportional nor constant to the protoplast size and differed for each protoplast. Usage of individually determined b for the computation provided the best fitting performance for determining the Lp, whereas collective b decreased the accuracy of regression and resulted in the underestimation of Lp. Our approach also has the advantage of a shorter period of hyperosmotic challenge, and as such, is suitable for observing fragile protoplasts. We found a gradual reduction in b and a linear increase in Lp during four days of storage at 20°C, likely due to degradation of internal components and dysfunction of the cell membrane, respectively. We also discuss the potential need to consider tissue specificity and possible damage by protoplast isolation to conduct shelf-life research of leafy vegetables. Keywords: Mesophyll protoplast, Nonosmotic volume, Numerical determination, Spinacia oleracea, Water loss, Water permeability.

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3