A Data Augmentation Approach Based on Generative Adversarial Networks for Date Fruit Classification

Author:

Ufuah Donald,Ufuah Donald,Thomas Gabriel,Balocco Simone,Manickavasagan Annamalai,Thomas Gabriel,Balocco Simone,Manickavasagan Annamalai

Abstract

Highlights Classification of date fruit hardness levels from images. Combination of deep networks and an expert system to yield better accuracies. Abstract. Machine learning techniques have been used in various agricultural applications from farming to post-harvest operations. For some cases, a large amount of data is not available and improving on classification accuracies based on deep networks cannot be an option. Such is the case presented here for sorting date fruits based on their hardness into three classes (soft, semi-hard, hard). The original dataset in this work consists of 1800 monochrome images with 600 images per class obtained from different growing regions in Oman. This is a limited number of examples to consider deep networks. Thus, this work proposes data augmentation based on Generative Adversarial Networks (GAN) to synthetically augment the date fruit images. It incorporates a Densely Connected Convolutional Network (DenseNet) for date fruit classification. The goal is to generate enough images so that DenseNet can successfully classify them. The GAN images help during the training part when a large dataset is used for training. Accuracies of 100%, 100%, and 99% were achieved for the hard, soft, and semi-hard classes by using an expert system in combination with two DenseNet networks, one network trained for classifying hard and soft cases as well as a second network that classifies the three classes. Keywords: Data augmentation, Deep learning, Expert system, Fruit classification, GAN, Neural networks.

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3