Classification of Crop Residue Cover in High-Resolution RGB Images Using Machine Learning

Author:

Upadhyay Parth C.,Lory John A.,DeSouza Guilherme N.,Lagaunne Timotius A. P.,Spinka Christine M.

Abstract

HighlightsA machine learning framework estimated residue cover in RGB images taken at three resolutions from 88 locations.The best results primarily used texture features, the RFE-SVM feature selection method, and the SVM classifier.Accounting for shadows and plants plus modifying and optimizing the texture features may improve performance.An automated system developed using machine learning is a viable strategy to estimate residue cover from RGB images obtained with handheld or UAV platforms.Abstract. Maintaining plant residue on the soil surface contributes to sustainable cultivation of arable land. Applying machine learning methods to RGB images of residue could overcome the subjectivity of manual methods. The objectives of this study were to use supervised machine learning while identifying the best feature selection method, the best classifier, and the most effective image feature types for classifying residue levels in RGB imagery. Imagery was collected from 88 locations in 40 row-crop fields in five Missouri counties between early May and late June in 2018 and 2019 using a tripod-mounted camera (0.014 cm pixel-1 ground sampling distance, GSD) and an unmanned aerial vehicle (UAV, 0.05 and 0.14 GSD). At each field location, 50 contiguous 0.3 × 0.2 m region of interest (ROI) images were extracted from the imagery, resulting in a dataset of 4,400 ROI images at each GSD. Residue percentages for ground truth were estimated using a bullseye grid method (n = 100 points) based on the 0.014 GSD images. Representative color, texture, and shape features were extracted and evaluated using four feature selection methods and two classifiers. Recursive feature elimination using support vector machine (RFE-SVM) was the best feature selection method, and the SVM classifier performed best for classifying the amount of residue as a three-class problem. The best features for this application were associated with texture, with local binary pattern (LBP) features being the most prevalent for all three GSDs. Shape features were irrelevant. The three residue classes were correctly identified with 88%, 84%, and 81% 10-fold cross-validation scores for the 2018 training data and 81%, 69%, and 65% accuracy for the 2019 testing data in decreasing resolution order. Converting image-wise data (0.014 GSD) to location residue estimates using a Bayesian model showed good agreement with the location-based ground truth (r2 = 0.90). This initial assessment documents the use of RGB images to match other methods of estimating residue, with potential to replace or be used as a quality control for line-transect assessments. Keywords: Feature selection, Soil erosion, Support vector machine, Texture features, Unmanned aerial vehicle.

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3