Within-Field Variability in Nutrients for Site-Specific Agricultural Management in Irrigated Cornfield

Author:

Kumar Hemendra,Srivastava Puneet,Lamba Jasmeet,Ortiz Brenda V.,Way Thomas R,Sangha Laljeet,Takhellambam Bijoychandra S.,Morata Guilherme,Molinari Roberto

Abstract

HighlightsPhosphorus and nitrogen in soil and plants varied during the growing season across the cornfield.Spatial variability in nutrients caused spatial variability in plant growth and crop yield across the cornfield.Hydrological characteristics and soil hydraulic properties were responsible for spatial variability in nutrients.Need to consider spatial variability in nutrients in delineating management zones before adopting management practices.Abstract. The adoption of precision agricultural practices in Alabama has been increasing in recent years. Although challenging, understanding nutrient variability in agricultural fields is important for site-specific management. This study investigated phosphorus (P) and nitrogen (N) variability in an irrigated cornfield located in the Town Creek Watershed of Tennessee Valley Region of Alabama, USA during the 2019 growing season. Three different irrigation management zones (high yield-HY, moderate yield-MY, and low yield-LY) were delineated based on ten years of historical records of crop yield, soil texture, and measured topography using the Management Zone Analyst (MZA) software. The soil samples at 0 to 15 cm, 15 to 30 cm, and 30 to 60 cm depths were collected five different times during the 2019 growing season. Both manure and inorganic fertilizer were uniformly applied during the growing season. At all soil depths, HY and MY zones had higher soil nutrient concentrations than the field average nutrient concentration. However, the LY zone had below field average soil nutrient concentration in the entire soil profile. The plants (above-ground) in HY and MY zones had higher than average nutrient concentrations and the plants in the LY zone had lower than average nutrient concentrations throughout the cornfield. This site-specific nutrient variation in these zones was due to within-field terrain attributes, differences in soil properties, and surface runoff losses. A significant difference was recorded in the corn yield in the HY and LY zones of the field. Two extreme groups of nutrients were found in the cornfield similar to irrigation management zones (HY and LY). A zone with a higher yield also had higher soil and plant nutrients in the zone (HY), and a zone with a lower yield also had lower soil and plant nutrients in the zone (LY). Incorporating nutrient variability for site-specific management in management zone delineation can help with reducing nutrient application, nutrient loss, and improving yield. This study supports the adopting of precision agricultural management practices based on in-field nutrient variability. Keywords: Corn, Crop yield variability, Irrigation, Management zones, Nitrogen, Nutrient variability, Phosphorus, Site-specific management, Topographical wetness index (TWI).

Funder

USDA

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3