Development of a Variable-Rate Controller for a Low-Cost Precision Planter

Author:

Coelho Andre L.de F.,Queiroz Daniel M. de,Valente Domingos S.M.,Pinto Francisco A. C.

Abstract

HighlightsA low-cost controller for variable-rate seeding was developed.The controller successfully identified management zones and changed the angular velocity of the seed metering device.The variable-rate controller maintained the actual seeding rate according to the prescribed seeding map.Abstract. The use of machines for variable-rate applications is becoming popular in modern agriculture. Due to the presence of imported and complex components, the acquisition cost of these machines is high for smallholder farmers. Several studies have been carried out using low-cost components in the development of precision agriculture machines to facilitate their adoption in low-income agriculture. Thus, the objective of this work was to develop a variable-rate controller for a low-cost precision planter. The system was developed and installed on a 1-row manual planter with a horizontal perforated disk distributor. A direct-current electric motor was used to drive the seed metering device. The angular velocity of the electric motor was controlled by a BeagleBone Black single-board computer. A program was written in Python 3.6 language, and a graphical user interface was generated by using PyQt5. Field trials were performed with maize seeds using a 28-hole disk and a prescription seeding map with four management zones. The row spacing was 0.75 m, and the planter ground speed was close to 1.0 m s-1. Field tests showed that the controller was effective at identifying the four management zones and controlling the angular velocity of the motor. By counting the number of plants germinated in the field test, it was verified that the variation in the angular velocity of the motor produced a change in the planting density. At each management zone, the planting density corresponded to the prescribed seeding map. The total cost of the parts used to assemble the controller was US$337.97, characterizing it as low cost. Successful field tests showed the potential for using low-cost components to develop variable-rate machines for smallholder farmers. Keywords: Low-income agriculture, Management zones, Precision agriculture, Single-board computer, Smallholder farmers.

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3