Dry Matter Estimation of Standing Corn with Near-Infrared Reflectance Spectroscopy

Author:

Digman Matthew F.,Cherney Jerry H.,Cherney Debbie J.

Abstract

HIGHLIGHTSQuadratic relationships were established to relate ear moisture or stover moisture to whole plant moisture, and they explained 90% and 84% of whole plant moisture, respectively. Based on our observations, the moisture content of a corn field can be estimated within +1% w.b. in 19 out of 20 fields by sampling 5-10 plants. The calibration offered by SCiO was successful at predicting oven-dried moisture content based on traditional NIRS metrics of R2 = 0.92, RMSE = 3.6, RPD = 3.2, and RER = 15. However, the 95% prediction bands were +6.9% w.b., which would indicate little utility in estimating ear moisture content. Based on a prediction model that was developed using the data collected for this study, a significant instrument-to-instrument bias was observed, indicating the necessity of including multiple SCiO devices in calibration spectra collection. ABSTRACT. Determining the appropriate time to harvest whole-plant corn is an essential factor driving the successful preservation via anaerobic fermentation (ensiling). The current options for timely on-farm monitoring of corn moisture in the field include selecting a set of representative plants, chopping and drying a subsample, or harvesting a portion of the field using a harvester equipped with an on-board moisture sensing system. Both methods are time-consuming and expensive, limiting their practicality for harvest decision-making. This work’s objective was to develop a practical solution that utilizes the moisture content of the ear to estimate whole-plant moisture. An improvement of this method was also considered that utilized a hand-held near-infrared reflectance spectroscopy (NIRS) device to predict ear moisture in situ. Based on the data collected during this work, a quadratic relationship was developed where ear moisture explained 90% of the variability in whole-plant corn moisture. However, based on our observations, the hand-held NIRS evaluated would have little utility in predicting whole-plant corn moisture with either the calibration developed here or provided by the manufacturer. The manufacturer’s prediction model yielded the best result with an R2 of 0.92, and a ratio of performance to deviation of 3.19. However, the 95% prediction band was +6.85% w.b. Finally, we determined that for a corn field uniform in appearance, sampling five to ten plants is likely to provide a reasonable estimate of field moisture. Keywords: Corn silage, Forage analysis, Harvest timing, Moisture content, NIRS.

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3