Investigating the Wettability of Rapeseed Leaves

Author:

He Yong,Wu Jianjian,Xiao Shupei,Fang Hui,Zheng Qishuai

Abstract

HighlightsContact angles of spray droplets were positively correlated with their surface tension.Wettability of rape leaves was generally poor for most pesticides.Surface structure and free energy determine the hydrophobicity of rape leaves.The size of the spray droplets had no significant influence on rape leaf wettability.Abstract. In order to improve the deposition and adherence of spray droplets on leaf surfaces, the wettability of rapeseed leaves was investigated. We explored the effect of different pesticides and test surfaces on droplet contact angles, and analyzed the effects of leaf surface properties, droplet sizes and the addition of organosilicone adjuvant on wettability. The results indicated that contact angles of different liquids were positively correlated with their surface tension for rapeseed leaves. The wettability of rapeseed leaves was generally poor using different pesticides, but was highest for a fungicide mixture of difenoconazole and propiconazole. The hydrophobicity of rapeseed leaves is largely determined by the complex microstructure and the low surface free energy of the leaves. The size of the spray droplets had no significant influence on the wettability. Moreover, the addition of an organosilicone adjuvant significantly reduced the surface tension of all spray droplets, with the best result for a 50% procymidone solution. In conclusion, the factors affecting rapeseed leaf surface wettability should be considered comprehensively before selecting the appropriate pesticide, so as to improve its utilization rates. Keywords: Contact angle, Leaf surface, Pesticide application, Spray droplet.

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3