Soil Temperature Prediction Based on 1D-CNN-MLP Neural Network Model

Author:

Wang Yujie,Zhuang Dongling,Xu Jinghui,Wang Yemin

Abstract

Highlights To predict soil temperature, a new deep learning model called 1D-CNN-MLP is proposed, which has higher accuracy or faster convergence compared with MLP or LSTM. Convolutional neural network part in the model could extract and calculate transmission of soil temperature. Using the non-sequential data of several soil temperature layers combined with the model, we can predict other temperature layers. The model can greatly reduce the difficulty and cost of soil temperature measurement. Abstract. Soil temperature plays an important role in agriculture. In order to achieve cost reduction in the sensor arrangement when monitoring soil temperature, a novel model called 1D-CNN-MLP (One dimensional convolutional neural network-Multilayer perceptron) was proposed for soil temperature prediction. Meteorological data and soil temperature data on different soil layers collected for the 2018~2021 period from a weather station in Yangling, China, were used for calculation in our work. Our model was evaluated using statistical measures of MSE (Mean Square error). The model parameters with high operation efficiency and high accuracy are obtained, and the training result records much lower error than MLP (multilayer perceptron) and faster convergence than LSTM (long short-term memory) with an MSE of 0.288 x 10&-3. The 1D-CNN (One-dimensional convolutional neural network) part of the model is used to reveal and extrapolate the law of how soil temperature propagates in different soil layers. In the case where only three layers of soil temperature data are known, the characteristic temperature layer depths of 10 cm, 15 cm, and 40 cm, are selected to place sensors and obtain the best prediction effect of soil temperature at different depths of 5 to 160 cm with a RMSE (Root mean squared error) of 1.988?. The model may help users with improved and economical soil temperature prediction and control, thus boosting crop yield. Ultimately, we found the model has a relatively poor performance in the accuracy of deep soil temperature prediction when only three layers of soil temperature data are known, and it is suggested that the model can be further optimized in terms of kernel parameter setting, data composition, and the variation law of deep soil temperature. Keywords: 1D-CNN, MLP, Soil temperature prediction.

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

Biomedical Engineering,Soil Science,Forestry,Food Science,Agronomy and Crop Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3