Analysis of Broken Rice Kernels Using an Android Application

Author:

Salish Karthik,Gamboa José Alfredo,Ambrose Kingsly

Abstract

HighlightsAn android application was developed to analyze broken rice kernels.Maximum length and aspect ratio were good indicators to categorize broken rice kernels.The developed algorithm had a precision of 95.9% and an accuracy of 98.0%.Abstract. The morphological characteristics of grain kernels play an important role in identifying the quality of rice. Manual sorting and inspection of rice kernels is a laborious process and susceptible to human errors. Mechanical separators such as indented cylindrical separators have also been used to separate broken kernels. In recent times, computer vision through image analysis has been applied to automate these processes, however, this necessitates image acquisition and processing devices. This article focuses on the development and use of an android application to determine the physical quality of rice kernels by quantifying broken grains using image processing and analysis techniques. The algorithm for the application includes several steps within image processing such as: image acquisition, preprocessing, segmentation, morphological transformation, and feature extraction. This quality inspection system was evaluated for medium-grain white rice. Experimental results showed a maximum average error of 2.8% in the prediction of broken kernels. This application can be used by primary producers and traders for analyzing the quality of rice. Keywords: Android application, Computer vision, Image processing, Rice quality.

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3