Air-Pinch PWM Valve to Regulate Flow Rate of Hollow-Cone Nozzles for Variable-Rate Sprayers

Author:

Campos Javier,Zhu Heping,Jeon Hongyoung,Salcedo Ramón,Ozkan Erdal,Roman Carla,Gil Emilio

Abstract

Highlights Air-pinch PWM valve was investigated as an alternative to electric PWM valves to manipulate hollow-cone nozzles. Air-pinch and electric PWM valves performed comparable accuracy in flow rate modulations. Droplet sizes from hollow-cone nozzles with both PWM valves were comparable across DUCs ranging from 20% to 100%. Air-pinch PWM valve had great potential of use due to its capacity to isolate the internal parts of the valve from chemicals. Abstract. Electric pulse width modulation (PWM) solenoid valves are commonly used to regulate nozzle flow rates to achieve precision variable-rate spray applications. However, some pesticide formulations, such as wettable powders and adhesive additives, can potentially cause a malfunction such that the valve cannot completely shut off during flow rate modulation if spray lines are not cleaned thoroughly after spray applications. An air-pinch PWM valve was evaluated as a potential alternative to conventional PWM valves to modulate the flow rates of hollow-cone nozzles used on air-assisted orchard sprayers. With the air-pinch valve, spray mixtures only passed through a flexible tube to avoid chemicals directly contacting the moving components inside the valve chamber. The flow rate modulation was performed by pinching and releasing the tube back and forth with air-pilot PWM actions. Evaluations included the flow rate modulation capability along with droplet size distributions from three disc-core hollow-cone nozzles coupled with the PWM pinch valve and compared with a conventional electric PWM valve. Both air-pinch and electric PWM valves performed comparably in the flow rate modulation accuracy and droplet size distribution for hollow-cone nozzles operated at 414 and 827 kPa pressures across the duty cycles (DUCs) ranging from 10% to 100%, except for the air-pinch valve that could not activate at 10% DUC. The flow rates of nozzles modulated with both PWM valves at all DUCs were 5.3% greater on average than the target flow rates, while the flow rates were similar at 90% and 100% DUCs. Droplet size classifications based on ASABE Standard S-572.3 were generally consistent across DUCs ranging from 20% to 100% for the same nozzle and pressure with the air-pinch PWM valve and from 10% to 100% with the conventional electric PWM valve. The consistency of droplet sizes across DUCs and accuracy of flow rate modulations demonstrated the potential advantage of using the air-pinch PWM solenoid valve as an alternative for precision variable-rate sprayers to accurately apply different chemicals. Keywords: Droplet size, Flow rate control, Pesticide, Pinch valve, Precision farming, Pulse width modulation.

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

Biomedical Engineering,Soil Science,Forestry,Food Science,Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3