Dry Bean (Phaseolus vulgaris L.) Crop Water Production Functions and Yield Response Factors in an Arid to Semi-Arid Climate

Author:

Sharma Vivek,Rai Abhijit

Abstract

HighlightsDeficit irrigation negatively affected dry bean yield and yield components.Excess irrigation increased crop ETc but not dry bean yield.Soil moisture fluctuation was greater in the top 0.3 m of the soil profile compared to deeper depths.Crop water production function had a slope of 18.9 kg ha-1 mm-1 and threshold crop evapotranspiration of 171 mm.Dry bean crop was found to be sensitive to water stress (yield response factor Ky = 1.94).Abstract. Under changing climate conditions and declining water resources, understanding crop response to water stress is critical for effective irrigation management. The objectives of this study were to quantify dry bean (Phaseolus vulgaris L., cv. Othello) soil moisture dynamics, crop evapotranspiration (ETc), and yield response factor and to develop dry bean irrigation and crop water production functions (IWPF and CWPF). Five irrigation treatments, i.e., full irrigation (FIT), 75% FIT, 50% FIT, 25% FIT, and 125% FIT, were evaluated using a randomized complete block design (RCBD) with three replications for three years (2017, 2018, and 2019) in the arid to semi-arid intermountain region of Powell, Wyoming. The results showed a significant influence of irrigation on dry bean soil moisture dynamics and ETc. The dry bean crop showed a greater soil moisture fluctuation in the top 0.3 m of the soil profile compared to 0.6 m and at 0.9 m. ETc ranged from 187 to 438 mm, from 190 to 409 mm, and from 217 to 398 mm in the 2017, 2018, and 2019 growing seasons, respectively. A positive two-segment relationship was observed between dry bean seed yield and cumulative irrigation water applied. The average cumulative seasonal irrigation of 310 mm resulted in maximum seed yield. For all three years, the seed yield increased linearly with ETc. Combining the data from the three years resulted in a CWPF with a slope of 18.9 kg ha-1 mm-1 and an offset of 171 mm of ETc (i.e., the ETc required for crop establishment before any seed yield is produced, or threshold ETc). Moreover, the dry bean crop was found to be sensitive to water stress (Ky = 1.94). These results indicated that under the typical semi-arid to arid climate conditions of the intermountain region of Wyoming, deficit irrigation of dry bean may not be a viable strategy because the yield loss outweighs water-saving benefits. Keywords: Dry bean, Crop evapotranspiration, Crop production function, Irrigation water production function.

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3