Optimum Feature Subset for Optimizing Crop Yield Prediction Using Filter and Wrapper Approaches

Author:

Maya Gopal P. S.,Bhargavi R

Abstract

Abstract. In agriculture, crop yield prediction is critical. Crop yield depends on various features which can be categorized as geographical, climatic, and biological. Geographical features consist of cultivable land in hectares, canal length to cover the cultivable land, number of tanks and tube wells available for irrigation. Climatic features consist of rainfall, temperature, and radiation. Biological features consist of seeds, minerals, and nutrients. In total, 15 features were considered for this study to understand features impact on paddy crop yield for all seasons of each year. For selecting vital features, five filter and wrapper approaches were applied. For predicting accuracy of features selection algorithm, Multiple Linear Regression (MLR) model was used. The RMSE, MAE, R, and RRMSE metrics were used to evaluate the performance of feature selection algorithms. Data used for the analysis was drawn from secondary sources of state Agriculture Department, Government of Tamil Nadu, India, for over 30 years. Seventy-five percent of data was used for training and 25% was used for testing. Low computational time was also considered for the selection of best feature subset. Outcome of all feature selection algorithms have given similar results in the RMSE, RRMSE, R, and MAE values. The adjusted R2 value was used to find the optimum feature subset despite all the deviations. The evaluation of the dataset used in this work shows that total area of cultivation, number of tanks and open wells used for irrigation, length of canals used for irrigation, and average maximum temperature during the season of the crop are the best features for better crop yield prediction on the study area. The MLR gives 85% of model accuracy for the selected features with low computational time. Keywords: Feature selection algorithm, Model validation, Multiple linear regression, Performance metrics.

Funder

NIL

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

General Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine Learning Ensemble Classifiers for Feature Selection in Rice Cultivars;Applied Artificial Intelligence;2024-09-04

2. Crop Selection and Yield Prediction using Intelligent Algorithms;2024 International Conference on Expert Clouds and Applications (ICOECA);2024-04-18

3. An Innovative Method for Paddy Yield Prediction Based on DCNN-ELM Approach;2024 2nd International Conference on Intelligent Data Communication Technologies and Internet of Things (IDCIoT);2024-01-04

4. Efficient Crop yield Analysis Prediction in Modern Agriculture System using Machine Learning Algorithm;2023 International Conference on Data Science, Agents & Artificial Intelligence (ICDSAAI);2023-12-21

5. A machine learning model for studying the seasonality of aphids in wheat-based cropping systems of the terai zone of Darjeeling, West Bengal, India;CURR SCI INDIA;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3