Release of Ammonia and Greenhouse Gases along Moisture Gradient from Manure and Urea Applied Fargo Silty Clay Soil

Author:

Niraula Suresh,Rahman Shafiqur,Chatterjee Amitava

Abstract

Abstract. Greenhouse gas (GHG) [nitrous oxide (N2O), carbon dioxide (CO2), and methane (CH4)] emission and ammonia (NH3) volatilization from organic and commercial fertilizers are likely related to soil moisture levels. Effect of soil moisture [(30%, 60%, and 90% water-holding capacity (WHC)] on emissions from urea and manure treated (215 kg ha-1) Fargo-Ryan silty clay soil was studied under laboratory conditions. Soils (250 g) amended with solid beef manure (SM), straw-bedded solid beef manure (BM), urea (UR), and control (CT) were incubated for 28 days at 22±1°C, to determine GHGs (N2O, CO2, and CH4) emission and NH3 volatilization loss. The cumulative emission of N2O-N, CO2-C, and CH4-C ranged from 27 to 4402 µg N2O-N kg-1, 272 to 2030 mg CO2-C kg-1, and 10.1 to 1389 µg CH4-C kg-1 soil, respectively. The daily fluxes and cumulative emissions of N2O and CO2 generally followed the decreasing order of 30% < 90% < 60% of WHC. At 60% WHC, 1.01% of the total applied N was lost as N2O from urea treated soil. Carbon dioxide emission from manure treated soil (SM and BM) was up to two times the emission from UR treated soils. The Fargo clay soils showed higher CH4 emission at 90% WHC level. The cumulative NH3 volatilization loss from soil ranged from 29.4 to 1250.5 µg NH3-N kg-1, with the highest loss from UR amended soils at 30% WHC. These results suggest that gaseous emissions from manure and urea application under laboratory study are influenced by moisture levels of Fargo-Ryan silty clay soil. Keywords: Beef manure, Greenhouse gas, Soil water, Urea, Water holding capacity.

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3