Design and Testing of an On-Line Omnidirectional Inspection and Sorting System for Soybean Seeds

Author:

Quan Longzhe,Zhang Tianyu,Sun Liran,Chen Xin,Xu Zhitong

Abstract

Abstract. At present, the manual grading of soybean seeds is both time consuming and laborious, and detecting the full-surface information of soybean seeds using an existing automatic sorting machine is difficult. To solve this problem, an on-line omnidirectional inspection and sorting system for soybean seeds was developed using embedded image processing technology. According to the principles employed by the system, the surface friction properties and full-surface information such as the shape, texture and color of soybean seeds were adopted in the study. Soybean seeds were inspected and sorted using their full surface information in combination with the embedded image processing technology. Split, worm-eaten, gray-spotted, slightly cracked, moldy and normal soybeans were used to test the system. According to the test results, the optimum design parameters of the preliminary sorting device based on the friction properties were a tilting angle of 12° and a linear velocity of 0.4 m/s. Furthermore, the optimum design parameters of the directional integrated device were a tilting angle of 19° and a linear velocity of 0.45 m/s. The sorting speed was 400 soybeans per minute with 8-channel parallel transmission. The average sorting accuracies were 99.4% for split soybeans, 98.5% for worm-eaten soybeans, 98.5% for gray-spotted soybeans, 97.7% for slightly cracked soybeans, 98.6% for moldy soybeans, and 98.9% for normal soybeans. The overall results suggest that the system can potentially meet the needs of the rapid inspection and automatic sorting of soybean seeds and provide references for research on the alternating rotational motion of granules and on-line collection of full-surface information. Keywords: Embedded image processing technology, Full surface, Granules, Inspection, On-line, Sorting, Soybean seeds.

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

General Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3