Terminal Velocity of Wheat Stem Nodes versus Internodes for Similar Particle Dimensions

Author:

Womac Alvin R.,Klasek Sarah E.,Yoder Daniel,Hayes Doug G.

Abstract

Highlights Terminal velocities were measured for wheat stem nodes and internodes for similar particle dimensions to investigate the feasibility of aerodynamic separation. Mean measures of terminal velocities for wheat stem nodes and internodes were 4.91 and 3.35 m s-1, respectively, that coincided with values of 4.92 and 3.37 m s-1 calculated for spherical particles (Mohsenin, 1970). Wheat stem particle mass ranged from 0.015 (internode) to 0.041 g (node) that significantly correlated with terminal velocity ranging from 3.13 to 5.14 m s-1, respectively. Wheat stem particle density ranged from 112 to 297 kg m-3 that significantly correlated with terminal velocity ranging from 3.12 to 5.11 m s-1, respectively. Abstract. Efficient separation of physiological plant components potentially improved the targeting of components to best uses. The terminal velocity property used an opposing air velocity to equilibrate particle weight with the sum of the drag and buoyancy forces. This study used particles of similar dimensions to ascertain the effect of particle mass and density on experimental measures of terminal velocity in a wind tunnel and as calculated by reliable equations. Similar particle diameters, lengths, and volumes of wheat stems ranged from 0.362 to 0.376 cm, 1.25 to 1.28 cm, and 0.131 to 0.141 cm3, respectively. Moisture content was 12% wet basis. Wheat stem internodes had individual particle mass and density ranging from 0.015 to 0.019 g and 113 to 144 kg m-3, respectively, and mean Terminal Velocity Wind Tunnel (TVWT) terminal velocities for wheat stem internodes that ranged from 3.13 to 3.58 m s-1. Nodes had individual particle mass and density ranging from 0.031 to 0.041 g and 236 to 297 kg m-3, respectively, and mean TVWT terminal velocities for wheat stem nodes that ranged from 4.62 to 5.14 m s-1. Thus, no overlap in values was observed for particle mass, particle density, and terminal velocity between wheat stem internode and wheat stem node. This observation supports the potential of using terminal velocity to separate node from internode for similar-sized wheat stems at a given moisture content. Keywords: Aerodynamic separation, Anatomical component, Biomass property, Physical experiment, Sorting, Terminal velocity, Vertical wind tunnel, Wheat stem particles.

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

Biomedical Engineering,Soil Science,Forestry,Food Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3