Design and Experiments of Coaxial Contra-Rotating Sugarcane Base Cutter with Time-Frequency Control

Author:

Wu Xiuheng,Qin Jiahao,Ma Shaochun,Zhang Wanhao,Song Zhenghe

Abstract

Abstract. A laboratory-based cutting platform with speed control was developed to investigate the cutting mechanism for the support-cutting of sugarcane. A coaxial contra-rotating base cutter was designed to facilitate sugarcane support-cutting in a laboratory setting. The cutting platform, which consists of two discs with cutting blades, was driven by two variable-frequency electric motors. To manipulate the speed of each motor independently, a time-frequency controller was designed to handle system nonlinearity and to maintain system stability subject to speed variation. To validate the cutter design, a series of idle running tests and cane-cutting tests were implemented using the laboratory-based cutting platform. The results indicated that the rotating speed of the two cutting discs could be adjusted smoothly. The controller capped the overshoot under 1% in the speed step response and kept the fluctuation of the speed difference of the two cutting discs at less than 2.5 rpm. Evaluating the cane quality of support-cutting against free-cutting showed that support-cutting decreased the stubble damage rate from 22.67% to as little as 6.67%. The results also suggested that the time-frequency-controlled cutting platform was feasible for subsequent investigation for a better understanding of sugarcane support-cutting, such as the variation of energy consumption or stubble damage rate with different rotating speed or different blade shape, which will provide constructive suggestions for the future base cutter design. Keywords: Base cutter, Support-cutting, Cutting platform, Time-frequency control.

Funder

Chinese Universities Scientific Fund

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3