Hyperspectral Estimation of Apple Canopy Chlorophyll Content Using an Ensemble Learning Approach

Author:

Bai Xueyuan,Song Yingqiang,Yu Ruiyang,Xiong Jingling,Peng Yufeng,Jiang Yuanmao,Yang Guijun,Li Zhenhai,Zhu Xicun

Abstract

HighlightsMonitored the canopy chlorophyll content of apple trees using hyperspectral reflectance information.Constructed support vector machine combination regression model (C-SVR) based on five-fold cross validation and support vector machine regression approach.Compared estimation accuracy of ensemble learning models (C-SVR, RF), machine learning models (SVR, ANN), and PLSR models for apple canopy chlorophyll content.Abstract. Rapidly and effective monitoring of the canopy chlorophyll content (CCC) of apple trees is of great significance for crop stress monitoring in precision agriculture. This study attempted to use hyperspectral vegetation indices (VIs) to estimate the CCC of apple trees based on ensemble learning approach. In this study, vegetation indices combined by any two wavelengths from 400 to 1100 nm were constructed to calculate the correlation coefficient with the CCC in apple. We constructed a partial least squares regression model (PLSR), artificial neural network regression model (ANN), support vector machine regression (SVR), random forest regression (RF) model and support vector machine combination regression model (C-SVR) based on combinations of VIs to improve the estimation accuracy in apple CCC. The results showed that the correlation coefficients between NDVI (949,695), OSAVI (828,705), RDVI (741,725), RVI (716,707), DVI (572,532), and apple CCC were all above 0.76. The CCC estimation model using the RF and C-SVR approach constructed by the NDVI (949,695), OSAVI (828,705), RDVI (741,725), RVI (716,707), and DVI (572,532) achieved the better estimation results, and the R2V, RMSEV, and RPDV values of models were 0.76, 0.131(mg . g-1), 2.04 and 0.78, 0.127(mg . g-1), 2.12, respectively. Compared with the PLSR, ANN, and SVR model, the R2V and RPDV values of C-SVR model were increased by 4%, 1.2%, 3.8%, and 5.0%, 28.4%, 7.1%, respectively. The results show that using C-SVR approach to estimating the apple CCC can realize high accuracy of quantitative estimation. Ensemble learning approach is an effective method for monitoring the nutrient status of fruit trees based on hyperspectral technique. Keywords: Apple tree canopy, Chlorophyll content, Crop stress monitoring, Ensemble learning, Hyperspectral, Vegetation index.

Funder

National Key Research and Development Program of China

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3