Evaluating Two Low-Cost GPS Receivers for Accuracy and Eventual Use in Pastured Cattle Research

Author:

Abdulai Gabriel A.,Sama Michael P.,Jackson Joshua J.

Abstract

HighlightsA stand-alone GPS receiver produced comparably lower location errors than a smartphone GPS.Low-cost GPS receivers are suitable for use in research on large-herd cattle behavioral response to UAVs.Different testing placements can influence the horizontal accuracy of low-cost GPS receivers and smartphones.Abstract. Using animal-borne global positioning system (GPS) collars, cattle behavioral response to anthropogenic disturbances can be accurately quantified at fine scale. However, the use of dedicated commercial GPS collars in large herd studies is cost-prohibitive. Therefore, low-cost GPS receiver alternatives were evaluated in static placements to determine how their accuracy compares to published data for commercial animal-borne GPS collars. The static accuracies of identical low-cost stand-alone GPS receivers and smartphones were evaluated in an open field without obstructions, under trees with and without canopy, and near an electric fence at 5 min and 1 s sample intervals. The mean circular error probable (CEP) value of the stand-alone GPS receiver was =2 m at 5 min and at 1 s in open field placement. The mean CEP value of the stand-alone GPS receiver was =3 m at 5 min and at 1 s when placed near the electric fence. The smartphone produced mean CEP values of =4 m at 5 min and =3 m at 1 s for the fence line and open field placements. Static testing under trees with canopy at the 5 min sample interval produced mean CEP values 100% greater than under trees without canopy at the 1 s sample interval. Low-cost commercial GPS receivers and smartphones with horizontal accuracy of =5 m at high sample resolution may offer accurate means of quantifying the behavioral response of cattle to UAVs in large herd studies. Keywords: Cattle behavior, Global positioning system, Horizontal accuracy, Smartphone GPS, Stand-alone GPS receiver, UAV, Unmanned aerial vehicle.

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3