A Multimodal Optical Sensing System for Automated and Intelligent Food Safety Inspection

Author:

Qin Jianwei,Hong Jeehwa,Cho Hyunjeong,Van Kessel Jo Ann S.,Baek Insuck,Chao Kuanglin,Kim Moon Sung

Abstract

Highlights A multimodal optical sensing system was developed for food safety applications. The prototype system can conduct dual-band Raman spectroscopy at 785 and 1064 nm. The system can automatically measure samples in Petri dishes or well plates. The system with AI software is promising for identifying species of foodborne bacteria. Abstract. A novel multimodal optical sensing system was developed for automated and intelligent food safety inspection. The system uses two pairs of compact point lasers and dispersive spectrometers at 785 and 1064 nm to realize dual-band Raman spectroscopy and imaging, which is suitable to measure samples generating low- and high-fluorescence interference signals, respectively. Automated spectral acquisition can be performed using a direct-drive XY moving stage for solid, powder, and liquid samples placed in customized well plates or randomly scattered in standard Petri dishes (e.g., bacterial colonies). Three LED lights (white backlight, UV ring light, and white ring light) and two miniature color cameras are used for machine vision measurements of samples in the Petri dishes using different combinations of illuminations and imaging modalities (e.g., transmission, fluorescence, and color). Real-time image processing and motion control techniques are used to implement automated sample counting, positioning, sampling, and synchronization functions. System software was developed using LabVIEW with integrated artificial intelligence functions able to identify and label interesting targets instantly. The system capability was demonstrated by an example application for rapid identification of five common foodborne bacteria, including Bacillus cereus, E. coli, Listeria monocytogenes, Staphylococcus aureus, and Salmonella spp.. Using a machine learning model based on a linear support vector machine, a classification accuracy of 98.6% was achieved using Raman spectra automatically collected from 222 bacterial colonies of the five species grown on nutrient nonselective agar in 90 mm Petri dishes. The entire system was built on a 30×45 cm2 breadboard, enabling it compact and portable and its use for field and on-site biological and chemical food safety inspection in regulatory and industrial applications. Keywords: Artificial intelligence, Automated sampling, Bacteria, Food safety, Machine learning, Machine vision, Raman, Sensing.

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

Biomedical Engineering,Soil Science,Forestry,Food Science,Agronomy and Crop Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3