Grain Yield, Crop and Basal Evapotranspiration, Production Functions, and Water Productivity Response of Drought-tolerant and Non-drought-tolerant Maize Hybrids under Different Irrigation Levels, Population Densities, and Environments: Part II. In South-c

Author:

Irmak Suat,Mohammed Ali T.,Kranz William L.

Abstract

Abstract. Information and data on newer drought-tolerant maize hybrid response to water in different climates are extremely scarce. This research quantified the performance of non-drought-tolerant (NDT) (H1) and drought-tolerant (DT) (H2, H3, and H4) maize ( L.) hybrids response to grain yield, crop evapotranspiration (ETc), basal evapotranspiration (ETb), ETc-yield production functions (ETYPF), and crop water use efficiency (CWUE) at three irrigation levels and two plant population densities (PPDs) at two locations (transition zone between sub-humid and semi-arid climates at Clay Center (SCAL), Nebraska, in 2010 and 2012; and in a sub-humid climate at Concord (HAL), Nebraska, in 2010, 2011, and 2012). Irrigation treatments were: fully irrigated (FIT), early cutoff (ECOT) (i.e., no irrigation after blister stage), and rainfed (RFT) under two PPDs of 59,300 plants ha-1 (low PPD), and 84,000 plants ha-1 (high PPD). Generally, DT hybrids performed superior to NDT hybrid consistently at both locations, treatments, and years. DT H3 and DT H4 had highest grain yield consistently at SCAL and HAL, respectively. DT H3 and H4 hybrids’ productivity was not only superior in the RFT, but also in FIT. The highest yield of 16.3, and 15.3 Mg ha-1 were achieved by DT H3 (high PPD) and DT H2 (high PPD), respectively, associated with 471 and 590 mm of ETc in the FIT in 2012 at SCAL, and HAL, respectively. In most cases, all hybrids had highest grain yield under low PPD than high PPD at the RFT. All hybrids exhibited a linear yield response to increasing ETc in all years at both locations with positive slopes in all cases. The individual ETYPF response for individual hybrids had inter-annual variation in slopes between the hybrids and for the same hybrids between the years and location for both low and high PPDs. The ETYPF slopes ranged from 0.004 to 0.102 Mg ha-1 mm-,1 including all treatments (i.e., irrigation and PPDs) at SCAL for 2010 and 2012; and they ranged from 0.008 to 0.057 Mg ha-1 mm-1 including all treatments at HAL for 2010, 2011, and 2012. The ETb values exhibited inter-annual variation for the same hybrid between the irrigation levels, PPDs, and locations and they also exhibited an inner-annual variation between the hybrids and treatments in a given year with DT hybrids having consistently lower ETb values than the NDT hybrid. The greatest CWUE values were found in DT hybrids consistently at both locations. The DT hybrids can significantly increase yield productivity as well as crop water productivity per unit of ETc with respect to conventional hybrids not only in dry conditions, but also in average or above average years in terms of precipitation. Keywords: Basal evapotranspiration, Crop evapotranspiration, Drought-tolerance, Efficiency, Maize, Production functions.

Funder

DuPont Pioneer® Seed Company

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3