Opportunities and Methods for Using Fluorescent Gel as a Proxy for Pathogen Transfer in Biosecurity Research

Author:

Warmka Anna,Cortus Erin L.,Janni Kevin A.,Schuft Abby,Noll Sally

Abstract

Highlights While fluorescing gel may evaporate from a surface, luminance of the surface does not change. Fluorescing gel exhibits thresholds beyond which additional gel density does not increase luminance. Fluorescing gel only transfers between surfaces when it is wet. There are limits to relating luminance and mass transfer. Fluorescent material is a useful proxy for contamination transfer demonstration and research. Abstract. Glo Germ fluorescing material is a popular tool for teaching and researching contaminant transfer in and out of agriculture. The objectives of this paper were to: (1) quantify relationships between gel area density (mass per unit area) on a surface and its luminance, and (2) identify factors important in measuring Glo Germ gel transfer from one surface to another. Varying densities of Glo Germ gel were applied to paper, plastic, and rubber surfaces; each combination was replicated three times. Digital images collected over one hour were analyzed for luminance (the average gray value per unit area) under ultraviolet light. Changes in mass were also measured. For the gel transfer objective, a fixed weight was placed over varying wet and dried fluorescent material densities on paper and plastic surfaces. Gel masses were weighed, and images of the surface and receptor were taken before and after transfer. Evaporation was significantly faster (p =  0.0019) on the paper surface compared to the plastic surface. The luminance did not change as the gel evaporated from either surface. For each material, luminance initially increased with increasing density until a threshold, after which additional fluorescing gel density did not change luminance. The thresholds for paper, plastic, and rubber surfaces were 0.018, 0.014, and 0.041 g cm-2, respectively. Wet gel transfer test results suggest that transfer is easier to quantify on the receptor than the source. The dried gel did not exhibit measurable transfer. This research found limitations in equating mass transfer and luminance, but luminance threshold values can inform maximum Glo Germ application for imaging purposes. These research results support continued research and outreach with fluorescent material to reduce and prevent the spread of disease or other harmful contaminants in food and animal production. Keywords: Biosecurity, Fluorescence, Luminance, Mass transfer.

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

Public Health, Environmental and Occupational Health,General Agricultural and Biological Sciences,Safety, Risk, Reliability and Quality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3