Estimating WEPP Cropland Erodibility Values From Soil Properties

Author:

Elliot William J.,Flanagan Dennis C.

Abstract

Highlights Very fine sand is the single most important variable for predicting rill and interrill erodibility values. Slope steepness is the most important property for predicting critical shear for rill erosion. Erodibility prediction equations with the best goodness-of-fits have both soil texture and mineralogy terms. Equations to predict erodibility from texture, organic carbon, cation exchange, slope, and taxonomy are proposed. Abstract. In the late 1980s, the USDA Agricultural Research Service, along with other federal agencies and multiple universities, collaborated to develop a new physically based soil erosion model, the Water Erosion Prediction Project (WEPP) Model. The WEPP model was intended to replace the Universal Soil Loss Equation and was to include estimates for upland runoff and erosion, sediment delivery to first order channels, and runoff and sediment routing through a downstream channel network. The WEPP technology estimated erosion from raindrop splash and sheet flow (interrill erosion) and concentrated channel flow (rill erosion). To make these erosion estimates, WEPP required new soil erodibility values for interrill erodibility (Ki). rill erodibility (Kr), and critical shear (𝜏c) for concentrated flow erosion. The WEPP Core team determined that they needed to estimate these three erodibility values from measurable soil properties for a wide range of soil conditions. To develop relationships between WEPP soil erodibility variables and other soil properties, a field study was carried out using rainfall and runoff simulation to measure the three erodibility values for 36 soils. Sites were identified on croplands from Washington to Georgia and Maine to California, USA for erodibility measurement. Concurrently, the USDA Soil Conservation Service (SCS) carried out detailed soil surveys and laboratory analyses for all sites to provide a large database of soil physical, chemical, and engineering properties. Correlation and regression analyses were carried out to develop relationships between SCS measurable soil properties and WEPP soil erodibility values. This article provides a summary of the field procedures, data analyses, and subsequent predictive equations that were developed. The predictive equations that were finalized in the WEPP User Summary used sand, very fine sand, clay, and organic carbon contents to predict cropland soil erodibility, but the Coefficient of Determination (r2) values were 0.55 or less. More complex predictive equations were developed with soil physical, chemical, mineralogical, and geomorphic properties, with r2 values up to 0.81. Most of the better predictive equations included terms for soil texture and clay mineralogy, often with additional chemical properties. A set of simplified erodibility equations using only the readily available properties of soil texture, organic carbon, cation exchange capacity, slope steepness, and taxonomic order were derived for use within the WEPP Model, with r2 values greater than 0.5 for all three equations for estimating soil erodibility from measurable soil properties. Keywords: Critical Shear, Interrill Erodibility, Rill Erodibility, Soil Properties, WEPP.

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

Biomedical Engineering,Soil Science,Forestry,Food Science,Agronomy and Crop Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3