Coefficients for Quantifying Subsurface Drainage Rates

Author:

Skaggs R. Wayne

Abstract

Abstract. It is proposed that technical papers on drainage research studies and engineered design projects should report standard coefficients or parameters that characterize the hydraulics of the system. The following coefficients define key subsurface drainage rates that can be used to quantify and compare the hydraulics of drainage systems across sites, soils and geographic locations. (1) The steady subsurface drainage rate (cm/d) corresponding to a saturated profile with a ponded surface. This subsurface drainage rate defines the length of time that water remains ponded on the soil surface following large rainfall events. It is proposed that this rate be called the Kirkham Coefficient (KC) in honor of Professor Don Kirkham who derived analytical solutions for saturated drained profiles for most soil and boundary conditions of interest. (2) Drainage intensity (DI), which represents the drainage rate (cm/d) when the water table midway between parallel drains is coincident with the surface. The DI can be estimated by the Hooghoudt equation and is dependent on the effective saturated hydraulic conductivity of the profile, drain depth, spacing, and depth of the soil profile or restrictive layer. (3) The drainage coefficient (DC), which quantifies the hydraulic capacity of the system. This value is the rate (cm/d) that the outlet works can remove water from the site. It is dependent on the size, slope, and hydraulic roughness of the laterals, submains, mains, and, in cases where pumped outlets are used, the pumping capacity. Routine inclusion of these three coefficients in the documentation of research and design projects would facilitate comparison of results from different soils and drainage systems, and generally, the meta-analysis of data pertaining to drainage studies. Keywords: Drainage, Drainage intensity, Drainage coefficient, Drainage nomenclature, Kirkham Coefficient.

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3