Author:
Vin-Nnajiofor Makua C.,Li Wenqi,Debolt Seth,Cheng Yang-Tse,Shi Jian
Abstract
HighlightsEndocarps have higher lignin content, cellular and bulk density, and hardness than typical biomass feedstocks.The impacts of lignin content, bulk density, and mechanical properties on energy consumption are discussed.Endocarps can be a potential feedstock for a biorefinery coproducing biofuel and bioproducts.Abstract. Lignin is an abundant biopolymer and a promising source of feedstock for high-value chemicals and materials. This study aims to characterize the lignin-rich endocarp biomass and identify features of this unique feedstock that are relevant to feedstock preprocessing and logistics. The chemical composition and cellular structure of walnut and peach endocarps were characterized using HPLC and scanning electron microscopy (SEM) imaging. Mechanical properties of the endocarps were investigated using nanoindentation. Mechanical tests revealed hardness values of up to 0.48 and 0.40 GPa for walnut and peach endocarps, respectively. With screen sizes of 1 and 2 mm, the specific energy consumption was 9.21 and 1.86 MJ kg-1 for walnut and 12.6 and 2.72 MJ kg-1 for peach, respectively, as determined using a knife mill. Milling energy consumption was correlated to screen size, lignin content, bulk density, and mechanical properties. This study provides critical information on feedstock supply logistics necessary to implement a novel feedstock in biorefineries and evaluate the economic feasibility for coproduction of biofuels and lignin-derived products. Keywords: Biomass feedstock, Lignin, Mechanical properties, Nanoindentation, Size reduction.
Publisher
American Society of Agricultural and Biological Engineers (ASABE)